Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(4): e0292206, 2024.
Article in English | MEDLINE | ID: mdl-38564644

ABSTRACT

Collection and cooking of wild vegetables have provided seasonal enjoyments for Japanese local people as provisioning and cultural ecosystem services. However, the Fukushima Daiichi Nuclear Power Plant accident in March 2011 caused extensive radiocesium contamination of wild vegetables. Restrictions on commercial shipments of wild vegetables have been in place for the last 10 years. Some species, including buds of Aralia elata, are currently showing radiocesium concentrations both above and below the Japanese reference level for food (100 Bq/kg), implying that there are factors decreasing and increasing the 137Cs concentration. Here, we evaluated easy-to-measure environmental variables (dose rate at the soil surface, organic soil layer thickness, slope steepness, and presence/absence of decontamination practices) and the 137Cs concentrations of 40 A. elata buds at 38 locations in Fukushima Prefecture to provide helpful information on avoiding collecting highly contaminated buds. The 137Cs concentrations in A. elata buds ranged from 1 to 6,280 Bq/kg fresh weight and increased significantly with increases in the dose rate at the soil surface (0.10-6.50 µSv/h). Meanwhile, the 137Cs concentration in A. elata buds were not reduced by decontamination practices. These findings suggest that measuring the latest dose rate at the soil surface at the base of A. elata plants is a helpful way to avoid collecting buds with higher 137Cs concentrations and aid in the management of species in polluted regions.


Subject(s)
Aralia , Fukushima Nuclear Accident , Isoflavones , Radiation Monitoring , Soil Pollutants, Radioactive , Humans , Vegetables , Cesium Radioisotopes/analysis , Ecosystem , Soil Pollutants, Radioactive/analysis , Soil , Soybean Proteins , Japan
2.
J Environ Radioact ; 263: 107184, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37119681

ABSTRACT

Radiocesium (137Cs) contamination of the freshwater ecosystems adjacent to the Fukushima Daiichi Nuclear Power Plant (FDNPP) in Japan has persisted long after the accident that occurred at the facility in March 2011. It is necessary to elucidate the dynamics of 137Cs in various aquatic ecosystems to predict 137Cs concentrations in fish and manage freshwater fisheries in the vicinity of FDNPP. To these ends, we applied stable isotope analysis to evaluate changes in 137Cs levels through trophic positions and the relative importance of the 137Cs sources at the trophic bases of two rivers and two lakes in Fukushima. The δ15N analyses disclosed that 137Cs decreases from primary producers to fish consumers in the river food web and 137Cs increases among fish consumers with increasing trophic position in the lake food web. The δ13C analysis revealed that autochthonous 137Cs contributed to fish contamination. The periphyton-dependent and zooplankton-dependent fish had comparatively higher 137Cs concentrations in the rivers and lakes, respectively. Cesium-137 supply from the pelagic food web was observed to contribute to greater 137Cs levels in the fish consumers inhabiting the lakes. The results of this study show that stable isotope analysis may help clarify 137Cs dynamics in freshwater food webs and identify the important 137Cs sources in the food web. Identifying important 137Cs sources and trophic transfers depending on the ecosystem help guide regulatory and management frameworks to establish profitability of the food fish stocks there and maintain food security.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Water Pollutants, Radioactive , Animals , Food Chain , Ecosystem , Lakes , Rivers , Water Pollutants, Radioactive/analysis , Cesium Radioisotopes/analysis , Fishes , Japan
3.
PeerJ ; 11: e14881, 2023.
Article in English | MEDLINE | ID: mdl-36874968

ABSTRACT

Although camera trapping has been effectively used for wildlife monitoring, its application to multihabitat insects (i.e., insects requiring terrestrial and aquatic ecosystems) is limited. Among such insects, perching dragonflies of the genus Sympetrum (darter dragonflies) are agroenvironmental indicators that substantially contribute to agricultural biodiversity. To examine whether custom-developed camera traps for perching dragonflies can be used to assess the relative population density of darter dragonflies, camera trapping, a line-transect survey of mature adult dragonflies, and a line-transect survey of exuviae were conducted for three years in rice paddy fields in Japan. The detection frequency of camera traps in autumn was significantly correlated with the density index of mature adults recorded during the transect surveys in the same season for both Sympetrum infuscatum and other darter species. In analyses of camera-detection frequency in autumn and exuviae in early summer, a significant correlation was observed between the camera-detection frequency of mature adults and the exuviae-density index in the following year for S. infuscatum; however, a similar correlation was not observed for other darter species. These results suggest that terrestrial camera trapping has the potential to be effective for monitoring the relative density of multihabitat users such as S. infuscatum, which shows frequent perching behavior and relatively short-distance dispersal.


Subject(s)
Odonata , Animals , Population Density , Ecosystem , Specific Gravity , Agriculture
4.
Environ Pollut ; 315: 120474, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36270568

ABSTRACT

Understanding the seasonality of 137Cs concentrations in aquatic animals is crucial for reviving local inland fisheries. The seasonality of 137Cs concentrations in animals is expected to vary, even if focal species consume similarly contaminated foods because the 137Cs excretion rate is species-specific, and 137Cs uptake by foraging autochthonous food resources also vary among seasons. Here, we conducted a seasonal monitoring survey of dissolved 137Cs concentrations as an indicator of the contamination level of food resources and measured 137Cs concentrations in two carnivorous aquatic animals (Palaemon paucidens and Rhinogobius sp.) that share a trophic niche in a stream connected to a dam reservoir. The dissolved 137Cs concentration had clear seasonality-high in summer and low in winter. The 137Cs concentrations in the animals revealed a different seasonal pattern-it peaked in October in P. paucidens and peaked in February in Rhinogobius. Overall, the 137Cs concentration was relatively higher in P. paucidens than in Rhinogobius, suggesting that P. paucidens has a lower excretion rate than Rhinogobius. Consequently, the seasonality of the 137Cs concentration in P. paucidens showed temporal changes similar to those of the dissolved 137Cs concentration, which were likely affected by 137Cs uptake through foraging, whereas that in Rhinogobius was controlled by 137Cs excretion. This study shows that the seasonality of 137Cs concentration can differ between sympatric animals that share a trophic niche. Accumulating knowledge and comparing the seasonality of 137Cs concentrations in fisheries species based on the balance between uptake and excretion will be valuable to determine the appropriate seasons to obtain less-contaminated products.


Subject(s)
Cesium Radioisotopes , Ecosystem , Animals , Cesium Radioisotopes/analysis , Seasons , Food Chain
5.
PLoS One ; 17(5): e0268629, 2022.
Article in English | MEDLINE | ID: mdl-35594311

ABSTRACT

After the Tokyo Electric Power Company Fukushima Daiichi Nuclear Power Plant accident in Japan, freshwater ecosystems near the site remained contaminated by radiocesium (RCs). Clarifying RCs concentrations in aquatic insects is crucial because fishes consume these insects that transfer RCs into freshwater ecosystems. As aquatic insects are usually measured for radioactivity in bulk samples of several tens of insects, variation in RCs concentration among individuals is not captured. In this study, we investigated the variability in 137Cs activity concentration in individual aquatic insects in detritivorous caddisfly (Stenopsyche marmorata) and carnivorous dobsonfly (Protohermes grandis) larvae from the Ota River, Fukushima. Caddisfly larvae showed sporadically higher radioactivity in 4 of the 46 caddisfly larvae, whereas no such outliers were observed in 45 dobsonfly larvae. Autoradiography and scanning electron microscopy analyses confirmed that these caddisfly larvae samples contained radiocesium-bearing microparticles (CsMPs), which are insoluble Cs-bearing silicate glass particles. CsMPs were also found in potential food sources of caddisfly larvae, such as periphyton and drifting particulate organic matter, indicating that larvae may ingest CsMPs along with food particles of similar size. Although CsMP distribution and uptake by organisms in freshwater ecosystems is relatively unknown, our study demonstrates that CsMPs can be taken up by aquatic insects.


Subject(s)
Fukushima Nuclear Accident , Holometabola , Radiation Monitoring , Water Pollutants, Radioactive , Animals , Cesium Radioisotopes/analysis , Ecosystem , Insecta , Japan , Particulate Matter/analysis , Rivers , Water Pollutants, Radioactive/analysis
6.
Environ Pollut ; 288: 117744, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34243085

ABSTRACT

Forest-stream ecosystems are widespread and biodiverse terrestrial landscapes with physical and social connections to downstream human activities. After radiocesium is introduced into these ecosystems, various material flows cause its accumulation or dispersal. We review studies conducted in the decade after the Fukushima nuclear accident to clarify the mechanisms of radiocesium transfer within ecosystems and to downstream areas through biological, hydrological, and geomorphological processes. After its introduction, radiocesium is heavily deposited in the organic soil layer, leading to persistent circulation due to biological activities in soils. Some radiocesium in soils, litter, and organisms is transported to stream ecosystems, forming contamination spots in depositional habitats. While reservoir dams function as effective traps, radiocesium leaching from sediments is a continual phenomenon causing re-contamination downstream. Integration of data regarding radiocesium dynamics and contamination sites, as proposed here, is essential for contamination management in societies depending on nuclear power to address the climate crisis.


Subject(s)
Fukushima Nuclear Accident , Radiation Monitoring , Cesium Radioisotopes/analysis , Ecosystem , Forests , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...